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Introduction

Vectorial Boolean functions

For n and m positive integers
Boolean functions: F:F3 — F,
Vectorial Boolean (n, m)-functions:  F : F; — F7’

Modern applications of Boolean functions:

@ reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;

@ voting games, artificial intelligence, management science,
digital electronics, propositional logic;

@ algebra, projective geometry, coding theory, combinatorics,
sequence design, cryptography.
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Introduction

On the number of Boolean functions

BF, is the set of Boolean functions F : F§ — Fo.

|BF,| = 2%
n 4 5 6 7 8
| BFn| 216 232 264 2128 2256

~ |6-10* | 4.10° | 10" | 10% | 107

BF] is the set of vectorial Boolean functions F : F5 — FJ.

1By =2

n 4 5 6 7 8
| BF,’” 264 21 60 2384 2896 22048
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Introduction

Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess
certain properties to ensure resistance of the ciphers to
cryptographic attacks.

Cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

@ Linear attack — Nonlinearity
@ Differential attack — Differential uniformity

@ Algebraic attack — Existence of low degree multivariate
equations

@ Higher order differential attack — Algebraic degree

@ Interpolation attack — Univariate polynomial degree
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Introduction

Optimal cryptographic functions

Optimal cryptographic functions

@ are vectorial Boolean functions optimal for primary
cryptographic criteria;

@ are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

@ are "HARD-TO-GET" - there are only a few known
constructions;

@ are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Introduction

Equivalence relations for cryptographic functions

Equivalence relations preserving main cryptographic properties

@ affine equivalence - Ao Fo A
with A and A’ affine permutations;

@ extended affine (EA-) equivalence Ao Fo A + A
with A affine;

@ EAl-equivalence - combination of EA-equivalence with
inverses of permutations;

@ CCZ-equivalence.

Affine
equivalence

EA-equivalence
EAl-equivalence

CCZ-equivalence
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Introduction

Importance of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties
divide the set of all functions into classes.

@ Instead of checking invariant properties for all functions, it
is enough to check only one function in each class.

@ They can be powerful construction methods providing for
each function a huge class of functions with the same
invariant primary properties but with a large variety of other
properties.
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Preliminaries
APN and AB functions
EAl-equivalence and known power APN and AB functions

Optimal cryptographic functions

Univariate representation of functions

The univariate representation of F : Fon — Faom for m|n:
F(x)=>_ cx', ¢ €Fan.
i=0

The univariate degree of F is the degree of its univariate
representation.

Example
F(x) = x4+ ax® 4+ a?x® + a*x®

where « is a primitive element of Fos.
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Preliminaries
APN and AB functions
EAl-equivalence and known power APN and AB functions

Optimal cryptographic functions

Algebraic degree of univariate function

For n a positive integer, binary expansion of an integer k,

0<k<2"is
n—1
k = Z 25Ks,
s=0
where ks, 0 < ks < 1. Then binary weight of k:
n—1
wa(k) = ks.
s=0

Algebraic degree of F

2n_1
F(x)= Y cx', ¢ €Fa,
i—0
d°(F) = wo(i).
(F) = oeimax o well)
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EAl-equivalence and known power APN and AB functions

Optimal cryptographic functions

Special functions

@ Fis linear if 1
ne

F(x)=> bix?.
i=0

@ Fis affine if it is a linear function plus a constant.
@ F is quadratic if for some affine A
n—1 o
F(x) =Y bjx**? + A(x).
i.j=0
@ F is power function or monomial if F(x) = x9.
@ F is permutation if it is a one-to-one map.

@ Theinverse F~! of a permutation F is s.t.
F1(F(x)) = F(F'(x)) = x.
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EAl-equivalence and known power APN and AB functions

Optimal cryptographic functions

Trace and component functions

Trace function from Fan to Fom for m|n:

n/m-1_
try(x) = Z P
i=0
Absolute trace function:
n—1 )
trp(X) = trh(x) = Y x%.
=0
For F : Fon — Fon and v € 3,
trp(VF(X))

is a component function of F.
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Preliminaries
APN and AB functions
EAl-equivalence and known power APN and AB functions

Optimal cryptographic functions

Differential uniformity and APN functions

@ Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.
@ F : Fon — Fan is differentially o-uniform if

F(x+a)+ F(x) = b, Vae Fs,, Vb e Fon,

has at most § solutions.

@ Differential uniformity measures the resistance to
differential attack [Nyberg 1993].

@ F is almost perfect nonlinear (APN) if § = 2.
@ APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
@ Gold function x2*+' on Fan with ged(i, n) = 1;
@ Inverse function x~' on Fon with n odd.
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Optimal cryptographic functions

Quadratic and Power APN Functions

@ F(x) = x% on Fzn, then F is APN iff for any b € Fan

(x+1)+x%=b

o If Fis quadratic then F is APNiff F(x + a) + F(x) = F(a)
has 2 solutions for any a # 0.
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Optimal cryptographic functions

Walsh transform of an (n, n)-function F

Walsh coefficients of F:

AU, v) = Z (-1 )Irn(V F(X))-‘rtrn(ax)’ UEFon, veE an
X€EFon

@ Walsh spectrum of F is the set of all Walsh coefficients of
F.

@ The extended Walsh spectrum of F is the set of absolute
values of all Walsh coefficients of F.

@ Fis APN iff

> Xp(uv) =232 - 1),
u,velF,n,v#£0
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Optimal cryptographic functions

Nonlinearity of functions

@ Linear cryptanalysis was discovered by Matsui in 1993.

@ Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].

The nonlinearity of F:

1 i
Ne=2"1—~ ‘max_ [\e(u,v)|<2"' —2% .
2 uel,n,veF;,

Functions achieving this bound are called almost bent (AB).

@ AB functions are optimal for linear cryptanalysis.

n

@ F is maximally nonlinear if nis even and Ng = 2"~ — 22
(conjectured optimal).
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Optimal cryptographic functions

Almost bent functions
e Fis ABiff \e(u,v) € {0,+2"7 }.

n+1

@ AB functions exist only for n odd.

@ If Fis ABthenitis APN.
@ If nis odd and F is quadratic APN then F is AB.
@ Algebraic degrees of AB functions are upper bounded by
o1 [Carlet, Charpin, Zinoviev 1998].
First example of AB functions:
@ Gold functions x2+1 on Fan with ged(i, n) = 1, n odd;
@ Gold APN functions with n even are not AB;

@ Inverse functions are not AB.
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Optimal cryptographic functions

Almost bent power functions

@ Checking Walsh spectrum for power functions is sufficient
forac Fp and b € F3,.

o F(x) =x%is AB on Fa iff Ar(a,b) € {0,+£2"" } for a € Fy,
b € F,.

@ In case of power permutation, sufficient for b = 1 and all a.
o If F = x%is a permutation, F is AB iff Ar(a, 1) € {0, +2"" }
for a € Faon.
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Optimal cryptographic functions

Cyclotomic, affine, EA- and EAI- equivalences

@ F and F’ are affine equivalent if
F/ = A1 oFo Ag
for some affine permutations A; and A..

@ F and F” are extended affine equivalent (EA-equivalent) if
F'=F +A
where F’ is affine equivalent to F and A is affine.

@ F and F’ are EAl-equivalent if F' is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

@ Functions x? and x% over F2» are cyclotomic equivalent if
d =2"-d mod (2" —1)forsome 0 <i<n
or,d=2'/d mod (2" — 1) in case gcd(d,2" — 1) = 1.
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Optimal cryptographic functions

Invariants and relation between equivalences

@ EA-equivalence and cyclotomic equivalence are particular
cases of EAl-equivalence.

@ APNness and ABness are preserved by EAl-equivalence.

@ Algebraic degree is preserved by EA-equivalence but not
by EAl-equivalence.

@ Univariate degree is not preserved by any of the
equivalences.

@ Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAl-equivalences).
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Known AB power functions x? on Fy»

’ Functions ‘ Exponents d ‘ Conditions on n odd ‘
Gold (1968) 2" +1 ged(i,n)=1,1<i<n/2
Kasami (1971) 22 2 11 ged(i,n) =1,2<i< n/2
Welch (conj.1968) 2"+ 3 n=2m+1
Niho 2™ 4+ 27 — 1, meven n=2m-+1
(conjectured in 1972) | 2™ + 2% _ 1, modd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Optimal cryptographic functions

Known APN power functions x? on Fan

Functions Exponents d Conditions
Gold 2" +1 ged(i,n) =1,1<i<n/2
Kasami 22 2 11 ged(i,n) =1,2< i< n/2
Welch 2" +3 n=2m-+1
Niho 2™ 1 2% _ 1, meven n=2m+1
2™ 1+ 2°%" 1, modd
Inverse 21 4 n=2m+1
Dobbertin | 24™ 4 23m 4 22m | om _ 4 n=>5m

@ Power APN functions are permutations for n odd and
3-to-1 for n even [Dobbertin 1999].

@ This list is up to cyclotomic equivalence and is conjectured
complete [Dobbertin 1999].

@ For neven the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n=_8.
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Optimal cryptographic functions

Open problems in the beginning of 2000

@ All known APN functions were power functions up to
EA-equivalence.

@ Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:

1 Existence of APN polynomials (EA-)inequivalent to power
functions.

2 Existence of APN permutations over Fan for n even.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

CCZ-equivalence

The graph of a function F : Fon — Fon is the set
Gr = {(x, F(x)) : x € Fon}.

F and F’ are CCZ-equivalent if £(Gg) = Gg for some affine
permutation £ of Fon x Fan [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
@ preserves differential uniformity, nonlinearity, extended
Walsh spectrum and resistance to algebraic attack.

@ is more general than EAl-equivalence [B., Carlet, Pott
2005].

@ was used to disprove two conjectures of 1998:
@ On nonexistence of AB functions EA-inequivalent to any
permutation [disproved by B., Carlet, Pott 2005];
e On nonexistence of APN permutations for n even
[disproved for n = 6 by Dillon et al. 2009].
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomie

CCZ-equivalence Classification of APN and AB functions

CCZ-Equivalence Formula
Let £ be a affine permutation of 2, such that £(Gr) = G

L(x,y) = (Li(x,y), La(x, y)) for some affine Ly, Ly : F3, — Fon.
Then L(x, F(x)) = (F1(x), F2(x)), where
F1 (X) - L1 (X7 F(X)))
Fa(x) = Lo(x, F(x)),
and
ﬁ(GF) = {(F-] (X), FQ(X)) X € an}.
L(GE) is the graph of a function iff F; is a permutation.

Then, F = F, 0 F, ' and £(GE) = GF.

Li(x,y) = Ai(x) + Ai2(¥)

for some affine Aj : Fon — Fon, i,j € {0,1}.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

Outline

Q CCZ-equivalence
@ Relation to EA- and EAI- equivalences
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

Construction of CCZ-eq. but EAl-ineq. F and F’

1 Find a permutation Ly(x, F(x)) = Ay o F(x) + A2(x) where
A1, A # 0 are linear (necessary but not sufficient).

e F’is EA-equivalentto F orto F~' (if it exists) iff there exists
a linear permutation £ = (L4, L) such that L(Gr) = G
and Li(x, y) = L(x) or Ly(x,y) = L(y).

2 Then linear function Ly(x, y) = As(y) + A4(x) such that
Ai(y)+Ax(x) = 0
As(y) +As(x) = 0O

has only (0, 0) solution, always exist.

@ To construct a permutation F’ both L;(x, F(x)) and
Lo(x, F(x)) must be permutations.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monom

CCZ-equivalence Classification of APN and AB functions

CCZ-equiv. is more general than EAIl-equiv.

Example: APN maps F(x) = x2*+1, ged(i, n) = 1, over Fr and
F'(x) = x4+ (X% + x + trp(1) + 1) trp (X2 + x trp(1))
are CCZ-equivalent but EAl-inequivalent.

Take for n odd
L(x,y) = (L1(x), La(x)) = (X +1trn(X) +tra(y), ¥ +tra(y) +tra(X))
and for n even E(Xv.y) = (L1>L2)(X7y) = (X + trn(.y)7y)'

For nodd F’ is AB and is EA-inequivalent to permutations. This
disproved the conjecture from 1998 that every AB function is
EA-equivalent to permutation.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monom

CCZ-equivalence Classification of APN and AB functions

First classes of APN and AB maps EAI-inequivalent to
monomials

APN functions CCZ-equivalent to Gold functions and
EAl-inequivalent to power functions on Fan; they are AB for n
odd [B., Carlet, Pott 2005].

’ Functions \ Conditions ‘
n>4
X2 (x4 x4 trn(1) + a6+ 4 x ten(1)) ged(i, n) = 1
6|n
[x + tr%(x2(2i+1) + X4(2"+1)) + trn(x)tr?,(x2i+‘ + X22f(2"+1))]2"+1 ged(i, n) = 1
m+#n
X2 () 4 x2 wl(x) + x al(x)? n odd
0?4 G £l 00] 5 (6 + (07 +1) min
P02 4 (24 £ umO0]2 (x4 (x) ged(i, n) = 1
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monom

CCZ-equivalence Classification of APN and AB functions

CCZ- and EA-classification of all functions for n < 4

Brinkmann 2019: For n < 3 for all functions over Faon

CCZ-class=EA-class.
@ n=1-4=22functions: 1 CCZ-class;
e it is affine functions, the class contains bijection;
@ n=2-256 = 28 functions: 2 CCZ-classes;
e one is affine, contains bijection;
e another is quadratic, has no bijections.
@ n=3-16777216 = 224 functions: 7 CCZ-classes;
e one affine, contains bijection;
e 3 of them are quadratic, contain bijections;
e 3 of them are cubic, have no bijections.
@ n=4-18446744073709551616 = 2%4 functions:
4713 EA-classes;
e 194 contain bijections;
o for 4151 CCZ-class=EA-class;
e some CCZ-classes can contain several EA-classes

containing permutations.
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CCZ-equivalence Classification of APN and AB functions

Outline

Q CCZ-equivalence

@ Classes of APN and AB polynomials CCZ-inequivalent to
monomials
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomiz

CCZ-equivalence Classification of APN and AB functions

First APN and AB classes CCZ-ineq. to monomials

Let s, k, p be positive integers such that n = pk, p = 3, 4,
gcd(k, p) = ged(s, pk) = 1 and a primitive in F5,.

s k_ —k k+s
X2 +1 + 062 1X2 +2

is quadratic APN on Fon. If nis odd then this function is an AB
permutation [B., Carlet, Leander 2006-2008].

This family

@ disproved the conjecture from 1998 on nonexistence of
quadratic AB functions inequivalent to Gold functions.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomiz
Classification of APN and AB functions

Known APN families CCZ-ineq. to power functions

CCZ-equivalence

N' Functions Conditions

c1- et g = ph,ged(k,3) = ged(s,3k) = Lp < {3,4} .

c2  mod p,m = p —i,n > 12,u primitive in F}
: : . n=2m,ged(i,m) = 1,c € Fy

cs a4 g g0 | el gt - 2

e e . +eX* + ¢X + 1 has no solution z s.t 1

ca a* +a ' Tr,(a2) a#0

c5 2 +a 'Tr (2" + a"z™) 3in,a #0

o6 2 +a 'Tr)(a°z" +a"2") 3in,a #0

cr- P e n = 3k, ged(k, 3) — ged(s, 3K

co ue® 4?2 fva? w1 eed( ) = eed(

vw # 1,3|(k + 5), u primiti

n=2m,m > 2 even, ged| Landi > 2 even,

10| (2 + 2" 1 o (uz + w2 ) e 422" Y(uz 4+ 02" P nota cube

u primitive in F

cn L(z)* z + L(z)e®

c12|  ut(e)(a’ +2) + t(a)”

B 0 e 2m,q = 2" ged(m,i) = 1,t(z) = u'z + 2% ,
Fat(z)” (@ +2)" + b + o) X*'*1 4 aX + b has no solution ove
n = 2m = 10, (a,b,c) = (3
c13 2% 4 a(@® ) b2 4 ofg? ") n = 2m,m odd,3 {m, (a,b, B°,1), 8 primiti

i€{m-2m2m-1,(m-2)" mod n}

3,k = 2, 3 primitive

@ All are quadratic. For n odd they are AB otherwise have
optimal nonlinearity.

@ In general, these families are pairwise CCZ-inequivalent
[B., Calderini, Villa, 2020].
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CCZ-equivalence Classification of APN and AB functions

Representatives of APN polynomial families n < 11

[Dimension| Functions [Equivalent tol
B x4 4ax174a8x104ax00x c3
aex7salx? c7-co
7 X+TrAx) c4
XO4x174a%x18 187X 4 ax ¥ 1x48 c3
XeTrg(x%) ca
8 Xra Trg(a’x) c4
a(eex ) axsal®x6)sa(axsa6x16)12 c1o
X+ Trg(x%) cn
X+Trel(x%) c4
9 X4TR(x04x18) cs
X +Tr(x184x%6) c6
KO5a2x 10,717, 418186 45425120 et
XopxP4a¥1x192 cs
X334x724g31x258 c3
X3 +Tr1p(x%) ca
XP4aTryp(ax) c4
X+ a%41x9 4 2682596 4 X268 c13
10 X7 +8%41x129 4 8296 4 x36 c13
X+ a128x6 4 g984x12 4 g13333 4 x34 1 2254 4 XBF 4 2128558 4 x96 4 gx130 1 g260x136 4 gix192 4 1365260 1 512384 c12
X7 + 892055 4 215312 4 q925x33 4 x4 4 a794x54 4 X85 4 g920x58 4 x96 4 g796x130 4 q29x136 4 g796x192 4. g926260 4 BO4x 364 c12
X7 +a788x0 4 a21x12 4 a799x33 4 x34 4 66254 4 xB5 4 aT88XE 4 xI6 4 g664x130 4 q920x136 4 gB64x192 4 g796x260 4 BT2x364 c12
X5+ 8770x18 4+ g512x20 4 g13333 4 X6 1 g2xB% 4 a514x80 4 x129 4 g512144 4 X160 1 gBOX514 4 g16x516 4 18x576 4 9165540 c12
X + a¥77x18 4 g#1320 4 g34x33 4 X6 4 g926x54 4 g#15xB0 4 x129 4 g#13x144 4 X160 4 1004514 . 940,516 ; g042576 4 gI0x64 c12
X5 +881x18 4+ 21720 4 aB61x33 4 536 4 g530x54 4 190 4 x129 4 17144 4 X160 4 608514 . 544,516 4 546,576 4 gB44x540 c12
7 XotTry () ca

Infinite families are identified for
@ only 3 out of 13 quadratic APN functions of Foe;
@ only 4 out of 488 quadratic APN of Fy7;
@ only 7 out of more than 21 000 quadratic APN of Fys.
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Classes of APN and AB polynomials CCZ-inequivalent to monomiz

CCZ-equivalence Classification of APN and AB functions

APN Polynomial CCZ-Ineq. to Monomials and
Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

x3 4 C17(X17 +x18 4 x20 4 X24)+

52,3 19,7 28,11 2,13

¢ (trg(€®2x3 + ¢®x° + %7 + *x™ + Ax %)+

tr3(c'®x%) + X3! + x*)

where c is some primitive element of Fys [Brinkmann, Leander
2008, Edel et al. 2008].

@ No infinite families known.
@ No AB examples known.
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CCZ-equivalence Classification of APN and AB functions
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Q CCZ-equivalence

@ Classification of APN and AB functions
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

CCZ- and EA- classification of APN functions
Brinkmann, Leander 2008:

CCZ-classification finished for:
@ APN functions with n < 5 (there are only power functions).

EA-classification is finished for:
@ APN functions with n <5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for
@ CCZ-equivalence of quadratic APN for n = 7,8 by Yu et al.
2013, Leander et al 2021, etc.;
@ EA-classification of APN functions for n > 6 by Calderini
2019;
@ quadratic APN functions with coefficients in Fo for n < 9 by
B., Kaleyski, Li, Yu 2020.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

Relation between equivalences for APN monomials

@ Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent [Dempwolff 2018, Yoshiara, 2018].

@ For non-quadratic power APN with n < 9 CCZ- and
EAl-equivalences coincide.
Conjectured the same for all n [B., Calderini, Villa, 2020].

Gold function x2'+1
@ CCZ-class#EAl-class.

Inverse function x~' [Kolsch 2021]:
@ CCZ-class=EA-class;
@ has one affine class of permutations.
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Relation to EA- and EAI- equivalences
Classes of APN and AB polynomials CCZ-inequivalent to monomi

CCZ-equivalence Classification of APN and AB functions

Relation between equivalences for quadratic APN

@ Two quadratic APN functions are CCZ-equivalent iff they
are EA-equivalent [Yoshiara 2017].

@ For quadratic APN functions CCZ-equivalence is more
general than EAl-equivalence [B., Carlet, Leander 2009].

@ For n =6, the 13 quadratic APN maps have from 3 to 91
EA-classes (algebraic degree from 2 to 4) [Calderini,
2020];
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Classes of APN and AB polynomials CCZ-inequivalent to monom

CCZ-equivalence Classification of APN and AB functions

Relation between equivalences for non-quadratic APN

@ For non-power non-quadratic APN functions
CCZ-equivalence is more general than EAl-equivalence
[B., Calderini, Villa, 2020].

@ For the only known APN function (n = 6) CCZ-inequivalent
to both quadratics and to monomials, the CCZ-class
contains 25 EA-equivalence classes and does not contain
permutations [Calderini 2020].
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Outline

e Applications of CCZ-equivalence and future perspectives
@ APN permutations
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Application to crooked functions

@ Every quadratic AB permutation with F(0) = 0 is crooked.
@ Crookedness is preserved only by affine equivalence.

Known crooked functions over Fon.

’ Functions \ Exponents d \ Conditions ‘

Gold (1968) X2 n odd
AB binomials (2006) | x2 1 + o2~ 'x2 "2 | n = 3k odd

@ Among all 488 quadratic AB functions with n = 7, only
Gold maps are CCZ-equivalent to permutations.

@ For n =9 two new crooked functions have been found by
Beierle and Leander in 2022.
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Big APN problem

Do APN permutations exist for n even?

Negative results:
@ no for quadratics [Nyberg 1993],
@ no for F € Fu[x] if n/2 is even [Hou 2004],
@ no for F € Fyn/2[x] [Hou 2004].
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CCZ-construction of APN permutation for n = 6

The only known APN permutation for n even [Dillon et al 2009]:

@ Applying CCZ-equivalence to quadratic APN on Fa» with
n = 6 and c primitive

P(x) = x® + x"0 + ox®*

obtain a nonquadratic APN permutation

02557 4 03056 | ;3250 | (37,49 | 123,48 | 139,43 (44,42 |

ChxM 018 x40 4 46436 | (51535 (52,34 | 18,33 4 056,32 .

C53x29 1 30528 | 025 | (5824 | 060,22 4 37,21 | 51,20

ox1® £ 2x17 1 c4x15 4 cMx14 4 c32x13 4 1812 4 ox!T 4

x4 c7x8 4+ c51x7 +¢1"x8 +c"8x5 + x4 4+ ¢'6x3 + ¢'3x
Used in 2013 by Bogdanov et al. in design of Fides lightweight
authenticated cipher.
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CCZ-construction of infinite family of APN permutation
for n even?

@ The quadratic APN function P(x) = x2 + x'0 + cx?* admits
a "butterfly" structure leading to differentially 4-uniform
permutations over Fon with n even but not divisible by 4
[Perrin, Udovenko, Beryukov 2016].

@ Pis a part of a family of quadratic APN trinomials with n
divisible by 3.
e CCZ-equivalence application for construction of
permutations still to be studied.

@ CCZ-equivalence class of P consists of 13 EA-equivalence
classes [Calderini 2020].
e two of EA-equivalence classes contain permutations;
e 4 affine equivalence classes contain permutations which
can be represented as Py, P, 1 Py, Ps.
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Outline

e Applications of CCZ-equivalence and future perspectives

@ New equivalences?
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Equivalence of indicator of the graphs of functions

The indicator of the graph Gr of F : F§ — F7'":

1 if y=F(x)
le(x.y) = { 0 otherwise ‘

@ F and F’ are CCZ-equivalent iff 1, = 1, o L for some
affine permutation L.

@ Fand F" are CCZ-equivalent iff 15, and 15, are
CCZ-equivalent [B., Carlet 2010].

Currently CCZ-equivalence is the most general known
equivalence relation preserving APN property.
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Application to commutative semifields

S = (S, +, ) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

@ S=(S,+,*)is considered as S = (Fpn, +, %) .

@ F :Fpn — Fpn is planar (p odd) if

F(x + a) — F(x), va e Fp,

are permutations.
@ There is one-to-one correspondence between quadratic
planar functions and commutative semifields.

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010, etc.] 51/57
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Yet another equivalence?

@ |sotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].

@ If quadratic planar functions F and F’ are isotopic
equivalent then F’ is EA-equivalent to

F(x + L(x)) = F(x) = F(L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].

@ Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:
F(x + L(x)) = F(x) = F(L(x))

where L is linear and F is APN.
It is not equivalence but a powerful construction method for
APN functions:

@ a new infinite family of quadratic APN functions;

@ for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNSs.

Isotopic construction for planar functions [B., Calderini, Carlet,
Coulter, Villa 2021].
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Outline

e Applications of CCZ-equivalence and future perspectives

@ Conclusion
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Conclusion

@ Optimal cryptographic functions - AB and APN functions
e their infinite classes and special cases.

@ Different equivalence relations preserving APNness and
ABness;
e relation between these equivalences;
e application for construction of different types of APN and
AB functions, in particular, permutations;
e classification results with respect to these equivalences.

@ Potential possibilities for a new equivalence.
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e Applications of CCZ-equivalence and future perspectives

@ Open problems
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Open problems

@ New equivalence relations preserving differential and
linear properties.

e "isotopic" equivalence?
@ Construction of an infinite family of APN permutations for n
even
e applying CCZ-equivalence to known quadratic APN family.

@ Application of CCZ-equivalence in cryptanalysis.

@ Classification of APN functions:

e new families of power functions;

e new families of APN and AB polynomials CCZ-inequivalent
to quadratics;

e classification over specific fields Fon with n > 6.
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