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Vectorial Boolean functions

For n and m positive integers
Boolean functions: F : Fn

2 → F2
Vectorial Boolean (n,m)-functions: F : Fn

2 → Fm
2

Modern applications of Boolean functions:
reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;
voting games, artificial intelligence, management science,
digital electronics, propositional logic;
algebra, projective geometry, coding theory, combinatorics,
sequence design, cryptography.
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On the number of Boolean functions
BFn is the set of Boolean functions F : Fn

2 → F2.

|BFn| = 22n

n 4 5 6 7 8

|BFn| 216 232 264 2128 2256

≈ 6 · 104 4 · 109 1019 1038 1077

BF n
n is the set of vectorial Boolean functions F : Fn

2 → Fn
2.

|BF n
n | = 2n2n

n 4 5 6 7 8

|BF n
n | 264 2160 2384 2896 22048
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Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess
certain properties to ensure resistance of the ciphers to
cryptographic attacks.

Cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

Linear attack – Nonlinearity

Differential attack – Differential uniformity

Algebraic attack – Existence of low degree multivariate
equations

Higher order differential attack – Algebraic degree

Interpolation attack – Univariate polynomial degree
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Optimal cryptographic functions

Optimal cryptographic functions
are vectorial Boolean functions optimal for primary
cryptographic criteria;

are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

are "HARD-TO-GET" - there are only a few known
constructions;

are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Equivalence relations for cryptographic functions
Equivalence relations preserving main cryptographic properties

affine equivalence - A ◦ F ◦ A′

with A and A′ affine permutations;
extended affine (EA-) equivalence A ◦ F ◦ A′ + A
with A affine;
EAI-equivalence - combination of EA-equivalence with
inverses of permutations;
CCZ-equivalence.
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Importance of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties
divide the set of all functions into classes.

Instead of checking invariant properties for all functions, it
is enough to check only one function in each class.
They can be powerful construction methods providing for
each function a huge class of functions with the same
invariant primary properties but with a large variety of other
properties.
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Univariate representation of functions

The univariate representation of F : F2n → F2m for m|n:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

The univariate degree of F is the degree of its univariate
representation.
Example

F (x) = x7 + αx6 + α2x5 + α4x3

where α is a primitive element of F23 .
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Algebraic degree of univariate function
For n a positive integer, binary expansion of an integer k ,
0 ≤ k < 2n is

k =
n−1∑
s=0

2sks,

where ks, 0 ≤ ks ≤ 1. Then binary weight of k :

w2(k) =
n−1∑
s=0

ks.

Algebraic degree of F

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n ,

d◦(F ) = max
0≤i<2n,ci ̸=0

w2(i).
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Special functions

F is linear if

F (x) =
n−1∑
i=0

bix2i
.

F is affine if it is a linear function plus a constant.
F is quadratic if for some affine A

F (x) =
n−1∑
i,j=0

bijx2i+2j
+ A(x).

F is power function or monomial if F (x) = xd .
F is permutation if it is a one-to-one map.
The inverse F−1 of a permutation F is s.t.
F−1(F (x)) = F (F−1(x)) = x .
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Trace and component functions
Trace function from F2n to F2m for m|n:

trm
n (x) =

n/m−1∑
i=0

x2im
.

Absolute trace function:

trn(x) = tr1
n(x) =

n−1∑
i=0

x2i
.

For F : F2n → F2n and v ∈ F∗
2n

trn(vF (x))

is a component function of F .
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Differential uniformity and APN functions
Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.
F : F2n → F2n is differentially δ-uniform if

F (x + a) + F (x) = b, ∀a ∈ F∗
2n , ∀b ∈ F2n ,

has at most δ solutions.
Differential uniformity measures the resistance to
differential attack [Nyberg 1993].
F is almost perfect nonlinear (APN) if δ = 2.
APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
Gold function x2i+1 on F2n with gcd(i ,n) = 1;
Inverse function x−1 on F2n with n odd.
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Quadratic and Power APN Functions

F (x) = xd on F2n , then F is APN iff for any b ∈ F2n

(x + 1)d + xd = b

If F is quadratic then F is APN iff F (x + a) + F (x) = F (a)
has 2 solutions for any a ̸= 0.
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Walsh transform of an (n,n)-function F
Walsh coefficients of F :

λF (u, v) =
∑

x∈F2n

(−1)trn(v F (x))+trn(ax), u ∈ F2n , v ∈ F∗
2n

Walsh spectrum of F is the set of all Walsh coefficients of
F .

The extended Walsh spectrum of F is the set of absolute
values of all Walsh coefficients of F .

F is APN iff ∑
u,v∈F2n ,v ̸=0

λ4
F (u, v) = 23n+1(2n − 1).
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Nonlinearity of functions

Linear cryptanalysis was discovered by Matsui in 1993.

Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].

The nonlinearity of F :

NF = 2n−1 − 1
2

max
u∈F2n ,v∈F∗

2n
|λF (u, v)| ≤ 2n−1 − 2

n−1
2 .

Functions achieving this bound are called almost bent (AB).

AB functions are optimal for linear cryptanalysis.

F is maximally nonlinear if n is even and NF = 2n−1 − 2
n
2

(conjectured optimal).
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Almost bent functions
F is AB iff λF (u, v) ∈ {0,±2

n+1
2 }.

AB functions exist only for n odd.

If F is AB then it is APN.

If n is odd and F is quadratic APN then F is AB.

Algebraic degrees of AB functions are upper bounded by
n+1

2 [Carlet, Charpin, Zinoviev 1998].

First example of AB functions:

Gold functions x2i+1 on F2n with gcd(i ,n) = 1, n odd;

Gold APN functions with n even are not AB;

Inverse functions are not AB.
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Almost bent power functions

Checking Walsh spectrum for power functions is sufficient
for a ∈ F2 and b ∈ F∗

2n .

F (x) = xd is AB on F2n iff λF (a,b) ∈ {0,±2
n+1

2 } for a ∈ F2,
b ∈ F∗

2n .

In case of power permutation, sufficient for b = 1 and all a.

If F = xd is a permutation, F is AB iff λF (a,1) ∈ {0,±2
n+1

2 }
for a ∈ F2n .
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Cyclotomic, affine, EA- and EAI- equivalences
F and F ′ are affine equivalent if

F ′ = A1 ◦ F ◦ A2

for some affine permutations A1 and A2.

F and F ′′ are extended affine equivalent (EA-equivalent) if

F ′′ = F ′ + A

where F ′ is affine equivalent to F and A is affine.

F and F ′ are EAI-equivalent if F ′ is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

Functions xd and xd ′
over F2n are cyclotomic equivalent if

d ′ = 2i · d mod (2n − 1) for some 0 ≤ i < n
or, d ′ = 2i/d mod (2n − 1) in case gcd(d ,2n − 1) = 1.

22 / 57



Introduction
Optimal cryptographic functions

CCZ-equivalence
Applications of CCZ-equivalence and future perspectives

Preliminaries
APN and AB functions
EAI-equivalence and known power APN and AB functions

Invariants and relation between equivalences

EA-equivalence and cyclotomic equivalence are particular
cases of EAI-equivalence.

APNness and ABness are preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not
by EAI-equivalence.

Univariate degree is not preserved by any of the
equivalences.

Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAI-equivalences).
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Known AB power functions xd on F2n

Functions Exponents d Conditions on n odd

Gold (1968) 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami (1971) 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch (conj.1968) 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

(conjectured in 1972) 2m + 2
3m+1

2 − 1, m odd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Known APN power functions xd on F2n

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 2n−1 − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m
Power APN functions are permutations for n odd and
3-to-1 for n even [Dobbertin 1999].
This list is up to cyclotomic equivalence and is conjectured
complete [Dobbertin 1999].
For n even the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n = 8.
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Open problems in the beginning of 2000

All known APN functions were power functions up to
EA-equivalence.

Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:
1 Existence of APN polynomials (EA-)inequivalent to power

functions.

2 Existence of APN permutations over F2n for n even.
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CCZ-equivalence
The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n}.
F and F ′ are CCZ-equivalent if L(GF ) = GF ′ for some affine
permutation L of F2n × F2n [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
preserves differential uniformity, nonlinearity, extended
Walsh spectrum and resistance to algebraic attack.
is more general than EAI-equivalence [B., Carlet, Pott
2005].
was used to disprove two conjectures of 1998:

On nonexistence of AB functions EA-inequivalent to any
permutation [disproved by B., Carlet, Pott 2005];
On nonexistence of APN permutations for n even
[disproved for n = 6 by Dillon et al. 2009].
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CCZ-Equivalence Formula
Let L be a affine permutation of F2

2n such that L(GF ) = GF ′ .

L(x , y) = (L1(x , y),L2(x , y)) for some affine L1,L2 : F2
2n → F2n .

Then L(x ,F (x)) = (F1(x),F2(x)), where

F1(x) = L1(x ,F (x)),

F2(x) = L2(x ,F (x)),

and
L(GF ) = {(F1(x),F2(x)) : x ∈ F2n}.

L(GF ) is the graph of a function iff F1 is a permutation.

Then, F ′ = F2 ◦ F−1
1 and L(GF ) = GF ′ .

Li(x , y) = Ai1(x) + Ai2(y)

for some affine Aij : F2n → F2n , i , j ∈ {0,1}.
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Construction of CCZ-eq. but EAI-ineq. F and F ′

1 Find a permutation L1(x ,F (x)) = A1 ◦ F (x) + A2(x) where
A1,A2 ̸= 0 are linear (necessary but not sufficient).

F ′ is EA-equivalent to F or to F−1 (if it exists) iff there exists
a linear permutation L = (L1,L2) such that L(GF ) = GF ′

and L1(x , y) = L(x) or L1(x , y) = L(y).

2 Then linear function L2(x , y) = A3(y) + A4(x) such that

A1(y) + A2(x) = 0
A3(y) + A4(x) = 0

has only (0,0) solution, always exist.
To construct a permutation F ′ both L1(x ,F (x)) and
L2(x ,F (x)) must be permutations.
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CCZ-equiv. is more general than EAI-equiv.

Example: APN maps F (x) = x2i+1, gcd(i ,n) = 1, over F2n and
F ′(x) = x2i+1 +

(
x2i

+ x + trn(1) + 1
)
trn

(
x2i+1 + x trn(1)

)
are CCZ-equivalent but EAI-inequivalent.

Take for n odd
L(x , y) = (L1(x),L2(x)) =

(
x + trn(x)+ trn(y), y + trn(y)+ trn(x)

)
and for n even L(x , y) = (L1,L2)(x , y) = (x + trn(y), y).

For n odd F ′ is AB and is EA-inequivalent to permutations. This
disproved the conjecture from 1998 that every AB function is
EA-equivalent to permutation.
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First classes of APN and AB maps EAI-inequivalent to
monomials

APN functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on F2n ; they are AB for n
odd [B., Carlet, Pott 2005].

Functions Conditions

n ≥ 4

x2i+1 + (x2i
+ x + trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1

6|n
[x + tr3

n(x2(2i+1) + x4(2i+1)) + trn(x)tr3
n(x2i+1 + x22i (2i+1))]2

i+1 gcd(i, n) = 1

m ̸= n

x2i+1 + trm
n (x2i+1) + x2i

trm
n (x) + x trm

n (x)2i
n odd

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

1
2i+1 (x2i

+ trm
n (x)2i

+ 1) m|n

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

2i

2i+1 (x + trm
n (x)) gcd(i, n) = 1
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CCZ- and EA-classification of all functions for n ≤ 4
Brinkmann 2019: For n ≤ 3 for all functions over F2n

CCZ-class=EA-class.
n = 1 - 4 = 22 functions: 1 CCZ-class;

it is affine functions, the class contains bijection;
n = 2 - 256 = 28 functions: 2 CCZ-classes;

one is affine, contains bijection;
another is quadratic, has no bijections.

n = 3 - 16777216 = 224 functions: 7 CCZ-classes;
one affine, contains bijection;
3 of them are quadratic, contain bijections;
3 of them are cubic, have no bijections.

n = 4 - 18446744073709551616 = 264 functions:
4713 EA-classes;

194 contain bijections;
for 4151 CCZ-class=EA-class;
some CCZ-classes can contain several EA-classes
containing permutations.
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First APN and AB classes CCZ-ineq. to monomials

Let s, k ,p be positive integers such that n = pk , p = 3,4,
gcd(k ,p) = gcd(s,pk) = 1 and α primitive in F∗

2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n . If n is odd then this function is an AB
permutation [B., Carlet, Leander 2006-2008].

This family
disproved the conjecture from 1998 on nonexistence of
quadratic AB functions inequivalent to Gold functions.
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Known APN families CCZ-ineq. to power functions

All are quadratic. For n odd they are AB otherwise have
optimal nonlinearity.
In general, these families are pairwise CCZ-inequivalent
[B., Calderini, Villa, 2020].
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Representatives of APN polynomial families n ≤ 11

Infinite families are identified for
only 3 out of 13 quadratic APN functions of F26 ;
only 4 out of 488 quadratic APN of F27 ;
only 7 out of more than 21 000 quadratic APN of F28 .
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APN Polynomial CCZ-Ineq. to Monomials and
Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

x3 + c17(x17 + x18 + x20 + x24)+

c14(tr6(c52x3 + c6x5 + c19x7 + c28x11 + c2x13)+

tr3(c18x9) + x21 + x42)
where c is some primitive element of F26 [Brinkmann, Leander
2008, Edel et al. 2008].

No infinite families known.
No AB examples known.
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CCZ- and EA- classification of APN functions
Brinkmann, Leander 2008:

CCZ-classification finished for:
APN functions with n ≤ 5 (there are only power functions).

EA-classification is finished for:
APN functions with n ≤ 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for
CCZ-equivalence of quadratic APN for n = 7,8 by Yu et al.
2013, Leander et al 2021, etc.;
EA-classification of APN functions for n ≥ 6 by Calderini
2019;
quadratic APN functions with coefficients in F2 for n ≤ 9 by
B., Kaleyski, Li, Yu 2020.
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Relation between equivalences for APN monomials

Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent [Dempwolff 2018, Yoshiara, 2018].
For non-quadratic power APN with n ≤ 9 CCZ- and
EAI-equivalences coincide.
Conjectured the same for all n [B., Calderini, Villa, 2020].

Gold function x2i+1

CCZ-class̸=EAI-class.

Inverse function x−1 [Kolsch 2021]:
CCZ-class=EA-class;
has one affine class of permutations.
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Relation between equivalences for quadratic APN

Two quadratic APN functions are CCZ-equivalent iff they
are EA-equivalent [Yoshiara 2017].

For quadratic APN functions CCZ-equivalence is more
general than EAI-equivalence [B., Carlet, Leander 2009].

For n = 6, the 13 quadratic APN maps have from 3 to 91
EA-classes (algebraic degree from 2 to 4) [Calderini,
2020];
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Relation between equivalences for non-quadratic APN

For non-power non-quadratic APN functions
CCZ-equivalence is more general than EAI-equivalence
[B., Calderini, Villa, 2020].

For the only known APN function (n = 6) CCZ-inequivalent
to both quadratics and to monomials, the CCZ-class
contains 25 EA-equivalence classes and does not contain
permutations [Calderini 2020].
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Application to crooked functions

Every quadratic AB permutation with F (0) = 0 is crooked.
Crookedness is preserved only by affine equivalence.

Known crooked functions over F2n .

Functions Exponents d Conditions

Gold (1968) x2i+1 n odd

AB binomials (2006) x2s+1 + α2k−1x2−k+2k+s
n = 3k odd

Among all 488 quadratic AB functions with n = 7, only
Gold maps are CCZ-equivalent to permutations.
For n = 9 two new crooked functions have been found by
Beierle and Leander in 2022.
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Big APN problem

Do APN permutations exist for n even?

Negative results:
no for quadratics [Nyberg 1993],
no for F ∈ F24 [x ] if n/2 is even [Hou 2004],
no for F ∈ F2n/2 [x ] [Hou 2004].
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CCZ-construction of APN permutation for n = 6

The only known APN permutation for n even [Dillon et al 2009]:
Applying CCZ-equivalence to quadratic APN on F2n with
n = 6 and c primitive

P(x) = x3 + x10 + cx24

obtain a nonquadratic APN permutation
c25x57+c30x56+c32x50+c37x49+c23x48+c39x43+ c44x42+
c4x41+c18x40+c46x36+c51x35+c52x34+ c18x33+c56x32+
c53x29+c30x28+cx25+c58x24+ c60x22+c37x21+c51x20+
cx18 + c2x17 + c4x15 + c44x14 + c32x13 + c18x12 + cx11 +
c9x10 + c17x8 + c51x7 + c17x6 + c18x5 + x4 + c16x3 + c13x

Used in 2013 by Bogdanov et al. in design of Fides lightweight
authenticated cipher.
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CCZ-construction of infinite family of APN permutation
for n even?

The quadratic APN function P(x) = x3 + x10 + cx24 admits
a "butterfly" structure leading to differentially 4-uniform
permutations over F2n with n even but not divisible by 4
[Perrin, Udovenko, Beryukov 2016].

P is a part of a family of quadratic APN trinomials with n
divisible by 3.

CCZ-equivalence application for construction of
permutations still to be studied.

CCZ-equivalence class of P consists of 13 EA-equivalence
classes [Calderini 2020].

two of EA-equivalence classes contain permutations;
4 affine equivalence classes contain permutations which
can be represented as P1,P−1

1 ,P2,P3.
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Equivalence of indicator of the graphs of functions

The indicator of the graph GF of F : Fn
2 → Fm

2 :

1GF (x , y) =
{

1 if y = F (x)
0 otherwise

.

F and F ′ are CCZ-equivalent iff 1GF ′ = 1GF ◦ L for some
affine permutation L.

F and F ′ are CCZ-equivalent iff 1GF and 1GF ′ are
CCZ-equivalent [B., Carlet 2010].

Currently CCZ-equivalence is the most general known
equivalence relation preserving APN property.
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Application to commutative semifields
S = (S,+, ⋆) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

S = (S,+, ⋆) is considered as S = (Fpn ,+, ⋆) .
F : Fpn → Fpn is planar (p odd) if

F (x + a)− F (x), ∀a ∈ F∗
pn ,

are permutations.
There is one-to-one correspondence between quadratic
planar functions and commutative semifields.

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010, etc.] 51 / 57
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Yet another equivalence?

Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].
If quadratic planar functions F and F ′ are isotopic
equivalent then F ′ is EA-equivalent to

F (x + L(x))− F (x)− F (L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].
Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:

F (x + L(x))− F (x)− F (L(x))

where L is linear and F is APN.
It is not equivalence but a powerful construction method for
APN functions:

a new infinite family of quadratic APN functions;
for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions [B., Calderini, Carlet,
Coulter, Villa 2021].
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Conclusion

Optimal cryptographic functions - AB and APN functions
their infinite classes and special cases.

Different equivalence relations preserving APNness and
ABness;

relation between these equivalences;
application for construction of different types of APN and
AB functions, in particular, permutations;
classification results with respect to these equivalences.

Potential possibilities for a new equivalence.
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Open problems

New equivalence relations preserving differential and
linear properties.

"isotopic" equivalence?
Construction of an infinite family of APN permutations for n
even

applying CCZ-equivalence to known quadratic APN family.

Application of CCZ-equivalence in cryptanalysis.
Classification of APN functions:

new families of power functions;
new families of APN and AB polynomials CCZ-inequivalent
to quadratics;
classification over specific fields F2n with n ≥ 6.
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